
Monad Initial Specification Proposal

Category Labs

Version 1.0.1
September 10, 2025

1 Introductory Concepts

1.1 Fields in Transactions and Blocks
A transaction t has the same fields as an Ethereum transaction. The relevant ones that the transaction
specifies are:

• Gas limit, gas_limitt.
Every transaction is only allowed to set gas_limitt ≤ max_tx_gas_limit, i.e., less than the full block_gas_limit.

• Type 2 (EIP-1559) transactions:

– Priority fee per gas (“maxPriorityFeePerGas” in Yellow paper), priority_fee_per_gast.

– Max fee per gas (“maxFeePerGas” in Yellow paper), max_fee_per_gast.

• Type 0 and type 1 transactions (legacy transactions):

– Gas Price (“gasPrice” in Yellow paper), gas_pricet

The block header for block k contains three base fee-related fields:

• Base fee, base_feek

• Trend accumulator, trendk, used inside the formula for the base fee update (details in Section 2.6).

• Moment accumulator, momentk, used inside the formula for the base fee update (details in Section 2.6).

1.2 Asynchronous Execution
In Monad, block execution is allowed to be delayed with respect to consensus. Concretely, consensus block
n includes the state root obtained by executing block n − k where k is a protocol parameter defining the
allowed execution delay. Consequently, validity checks performed by consensus for block n must only depend
on staten−k and the static data of block n− k + 1 through block n.

1

2 Transaction Fee Mechanism (TFM)
The bid for gas by transaction t in block k is given by:

EIP-1559 tx type : gas_bidt = min(priority_fee_per_gast + base_feek,max_fee_per_gast)
Legacy tx type : gas_bidt = gas_pricet

2.1 Inclusion and Block Construction
Validity checks for block k:

• Block gas limit check:
∑

t∈block
gas_limitt ≤ block_gas_limit

• Check for every transaction t:

– Base fee check: gas_bidt ≥ base_feek
– Per-transaction gas limit check: gas_limitt ≤ max_tx_gas_limit

– Other standard checks as in Ethereum, such as nonce matches the account nonce and gas limit
covers the intrinsic gas.

2.1.1 Reserve Balance

Reserve Balance logic is performed in both the consensus and execution clients to ensure that despite asyn-
chronous execution, sender accounts have enough balance to pay for gas fees at the time of execution. During
execution, transactions revert due to spending of account balance outside of gas payments when the balance
is below a specified reserve balance level. An exception is made for undelegated accounts that have no
pending transactions within the past k blocks. When performing block validity checks for block n, consensus
queries account balances of transaction senders from execution state as of block n − k and checks that the
worst-case balance for each sender after executing blocks n − k + 1 through block n will be non-negative
when factoring in execution spending restrictions. See Section 6 for a full description of the consensus and
execution logic.

2.2 Ordering
Transactions are ordered in the client according to their bid for gas, gas_bidt. This ordering preference is not
a validity check: it need not be checked on others’ blocks. It only describes the default client implementation
and is not meaningfully enforced by the protocol.

2.3 Payment Rule for User
The payment for transaction t is given by the gas fees:

Paymentt = gas_bidt · gas_limitt − storage_refund

See Section 4.2 for computation of storage refunds (due to SSTORE opcode). The user account gets the storage
refund at the end of the transaction’s execution and is required to have enough balance to cover the upfront
payment of gas_bidt ·gas_limitt (more details in Section 6). Notably, the storage refund does not reduce the
gas consumption of the transaction and does not free up gas capacity usable by subsequent transactions in
the block.

2

2.4 Burn Rule
The burn for each transaction t in block k is the gas burn:

Burnt = base_feek · gas_limitt − storage_refund

Note that burn can be negative (i.e., currency could be minted) due to the effect of the storage refund.

2.5 Reward Rule for the Validator
The reward for the validator for block k is given by the sum of the priority gas fees and a constant block
reward (staking and consensus-related rewards/penalties are not included here):

Rewardk =
∑

t∈block

(gas_bidt − base_feek) · gas_limitt

2.6 Base Fee Update Rule
Similar to EIP-1559, Monad has a mandatory base fee enforced by consensus that is computed algorithmically
across blocks based on recent utilization relative to a target. As with block validity checks, utilization is
measured with respect to gas_limittx. Additionally, a protocol parameter min_base_fee is introduced as a
lower bound to the base fee paid. The update rule is defined as follows:

block_gask =
∑

tx∈blockk

gas_limittx

base_feek+1 = max

{
min_base_fee,base_feek · exp

(
ηk · block_gask − target

block_gas_limit− target

)}
ηk =

max_step_size · epsilon

epsilon+
√
momentk − trend2k

trendk+1 = beta · trendk + (1− beta) · (target− block_gask)

momentk+1 = beta ·momentk + (1− beta) · (target− block_gask)
2

The initial values for the genesis block are: base_fee0 = 0; moment0 = 0; trend0 = 0. The reference
implementation is provided in Section 7; these are the integer math calculations that must be followed,
including for example the flooring square root. For more discussion around the update rule and parameters,
see Section 5.

3

3 List of Parameters with Suggestions
• Transaction-level:

– max_tx_gas_limit = 30M (controls for large transactions)1

• Higher protocol-level:

– block_gas_limit = 200M (500M gas / sec for 0.4 second block times)

– block_size_limit = 2MB (applies to total size of RLP encoded transactions; excludes header)

– min_base_fee = 100 MON-gwei (i.e., 100 · 10−9 MON)

– default_reserve_balance = 10 MON (10 million gas in flight at 10 times the min base fee, yet
small amount)

– k = 3 (building / validating consensus block n requires knowing state obtained by applying block
n− k)

• Base fee update rule:

– Learning rate max_step_size = 1/28

– Block gas target = 80% of limit = 160M

– Smoothing for accumulators beta = 0.96

– Scaling factor epsilon = 1 · target = 160M

1max_tx_gas_limit should be updated in conjunction with target.

4

4 Opcode Gas Costs and Gas Refunds
The costs of a few opcodes differ from the Yellow paper.

4.1 Cold Access Cost
To account for the relatively higher cost of state reads from disk in the Monad execution client, the following
changes are proposed to "cold" account and storage access costs:

Access Type Ethereum Monad
Account 100 if warm else 2600 100 if warm else 10100
Storage 100 if warm else 2100 100 if warm else 8100

Impacted opcodes:

• Account access: BALANCE, EXTCODESIZE, EXTCODECOPY, EXTCODEHASH, CALL, CALLCODE, DELEGATECALL,
STATICCALL, SELFDESTRUCT

• Storage access: SLOAD, SSTORE

For these opcodes, the dynamic access cost is unchanged for warm access and is as specified above for cold
access.

4.2 Storage Gas Cost and Refunds
In the Ethereum Yellow paper, as a deterrent to state growth, creating a new storage slot costs a large
amount of gas. However, refunds for clearing storage slots only give back a small fraction of the cost of
creating that storage slot. As a result, the incentive to reduce state growth is limited. In Monad, SSTORE gas
cost and refunds are changed to address this problem. To account for significantly higher execution capacity,
the cost of creating a storage slot is relatively higher; however, the refund upon freeing the storage slot is
proportionally much higher.
The SSTORE gas cost can be expressed in terms of component costs:

• m: baseline cost for the operation

• w: cost of writing a value to storage

• s: cost of creating a non-zero storage slot

• r: refund for clearing a storage slot

In order to achieve the desired effect, we propose changing the values of s and r while leaving the values of
m and w unchanged:

Component Cost Description Ethereum Monad
m baseline 100 100
w write to storage 2800 2800
s create non-zero slot 17100 125000
r refund for clearing slot 4800 120000

Now, we specify the gas cost of SSTORE in terms of these component costs depending on the following inputs2.
Inputs:

• value: new value to be stored.

• current_value: current value of the storage slot.
2The computation of SSTORE gas and refunds specified here is similar to the computation in the EVM for Ethereum:

https://www.evm.codes/

5

https://www.evm.codes/

• original_value: value of the storage slot before the current transaction.

Gas cost for SSTORE:

if value == current_value:
gas_cost = 100 (m)

elif current_value == original_value:
if original_value == 0:

gas_cost = 127900 (m+ w+ s)
else:

gas_cost = 2900 (m+ w)
else:

gas_cost = 100 (m)

Gas refund for SSTORE:

gas_refund = 0
if value != current_value:

if current_value == original_value:
if original_value != 0 and value == 0:

gas_refund += 120000 (r)
else:

if original_value != 0:
if current_value == 0:

gas_refund -= 120000 (−r)
elif value == 0:

gas_refund += 120000 (r)
if value == original_value:

if original_value == 0:
gas_refund += 127800 (s+ w)

else:
gas_refund += 2800 (w)

The storage refund storage_refund is then calculated as :

storage_refund = gas_refund · min_base_fee (1)

4.3 Precompiles
Precompiles are recalibrated to accurately reflect their relative costs in execution, and the following precom-
piles’ gas cost is changed compared to Ethereum:

Precompile Address Ethereum Monad Multiplier
ecRecover 0x01 3000 6000 2
ecAdd 0x06 150∗ 300∗ 2
ecMul 0x07 6000∗ 30000∗ 5
ecPairing 0x08 45000∗ 225000∗ 5
blake2f 0x09 rounds×1 rounds×2 2
point eval 0x0a 50000 200000 4

∗: Per input/operation as defined in the respective precompile specification.

6

5 Discussion

5.1 Reasoning for Parameters
5.1.1 Block Gas Target and Goal of Update Rule

The intended behavior of the base fee mechanism is that the base fee only ramps up so long as there is long-
term (i.e., not just for a few blocks) average gas usage close to the entire gas limit of the chain. Otherwise,
and in the usual case that there is no sustained (long-term) demand above the block gas target, the base fee
is intended to remain around min_base_fee. For this reason, the block gas target is set to 80% (significantly
higher than 50% in Ethereum’s EIP-1559) to allow for higher utilization, yet leave room for collecting demand
signals.

5.1.2 Minimum Base Fee

There are three ways to derive the minimum base fee:

• Cost to the users.

• The revenue/yield for the network, more specifically holders

• The marginal cost of processing an average unit of gas.

We use the first criterion. In order for a simple transfer (21,000 gas) to cost about 0.002 MON, set the
min_base_fee to 100 MON-gwei (i.e., 100 · 10−9 MON).

5.1.3 Base Fee Update Rule Parameters

First, an observation: by design, we want the fee to increase slower upon seeing full blocks than it decreases.
We will design the learning rates for the former. Specifically, when seeing a series of empty blocks (depending
on the smoothing parameter, longer or shorter), the fee will adjust at rates quadruple the ones we mention
below; this is due to how we decided to set our target, and is an intended property to protect from
overestimation of congestion relative to the block capacity.

We design the top end such that the highest rate corresponds to Ethereum’s rates but with 1 second block
times, i.e., 3.6%.Then, we fix the lowest achievable rate to correspond to a less aggressive than Ethereum’s
(half) at 1 second block times; or equivalently, Ethereum’s rate at 0.25 second block times.

These choices fully specify the parameters, and also, in hindsight, provide satisfying “normal” step size
and step size lower bound if blocks are above the target: with a long-term variance of 20% of the block gas
limit, this is a rate of 2.88%, corresponding to Ethereum’s rate with 0.64 second block times.

Finally, for the smoothing parameter, we choose a smoothing constant of β = 0.96 for a half-life of about
17 blocks, with the goal to definitely fade spikes of less than ∼ 10 seconds, i.e., fade at least about 20 blocks.

5.2 Gas Limit vs Gas Used
Due to delayed execution, and to prevent denial of service speculative attacks (that would show up as severe
underutilization of the chain’s capacity), the fees have to be charged on the transaction’s gas limit, or at
least some function of it. We choose to charge both the base fee and the priority fee on the gas limit:

• For the base fee, charging on the gas limit penalizes more the variance in actual execution gas, making
variance penalties on risk-adjusted arbitrage expected value (EV) heavier for speculative / optimistic
arbitrageurs, thus disincentivizing these harmful use cases (over the execution of normal, less-variance
user transactions). Such high-variance execution gas transactions are those that we define as more
correlated with spam transactions that we would like to disincentivize.

• For the priority fee, charging on the gas limit allows validators to still accurately determine the fees
paid to them under delayed execution. This is because it makes the knapsack problem of optimally
choosing the transactions to include in a block as easy as it can be, and it helps in inducing a clear
bidding behavior from users (upfront cost as a static unconditional payment). Payment based on gas

7

used would have been a conditional payment under delayed execution. Note that a conditional payment
can already be made through coinbase transfers. Either kind of conditional payment (coinbase or based
on gas used) would require synchronous execution (or accurate enough estimation) for the knapsack
optimal transaction choice problem (of a validator) to be tractable.

5.3 Discussion on Relative Storage Costs and Refunds
Blockchain nodes have several limited resources which are consumed by transaction processing, namely
bandwidth consumption, CPU time, and SSD throughput. Consumption of these resources must be metered
and charged to users to avoid DOS attacks. Additionally, although it does not have a direct cost at the time
of execution, state growth should also be metered and charged to users.

In Ethereum, this metering is done relative to each other using gas, but gas is a unidimensional measure
of the consumption of each of these resources, effectively projecting four dimensions into one. Unidimensional
resource pricing is suboptimal and constraints the resources to be priced only relative to each other; however,
migrating to multidimensional fees is a major undertaking that would break most existing interfaces.

The SSTORE repricing in Section 4.2 represents a partial attempt to move state growth fees into a separate
fee dimension without disrupting existing infrastructure. The repricing significantly raises the cost of creating
a storage slot relative to execution, but more importantly raises the proportion of refund from freeing a
storage slot, enabling storage to be charged rationally.

Ethereum previously had a more meaningful refund for freeing storage slots, but this was abused by
certain gas-sensitive users, who would create filler storage slots during times of low gas prices and destroy
them during times of high gas prices to reduce their overall fees paid. This practice, known as using
“GasTokens”, ultimately forced Ethereum to implement EIP-3529, which caps the rebate at a much smaller
amount to make GasTokens uneconomical. In the process, EIP-3529 substantially reduced the incentive to
free storage slots.

The problem of GasTokens (and the inability to pay rational refunds due to the need to discourage
GasTokens) is a casualty of unidimensional gas fee markets. State growth (reduction) due to storage creation
(deletion) is a long-term persistent cost and should not be metered relative to the congestion pricing of other
instantaneous resources like CPU and I/O.

The proposal in Section 4.2 addresses this by partially moving storage charges into a separate fee di-
mension. Specifically, it multiplies the gas_refund for freeing a storage slot by the min_base_fee, while
multiplying the gas_cost of creating a storage slot by the full gas_bid.

This ensures that no one may reduce their total fees paid using a mechanism like GasTokens, while still
preserving the incentive to free unnecessary storage slots. This, in turn, allows the protocol to reprice storage
slot creation to a relative gas cost that appropriately charges for state growth.

The main drawback of this approach is that if base_fee is high compared to min_base_fee (implying that
gas_bid is also high), users recover a lower proportion of their storage creation fees as refunds upon deletion.
However, we do not expect this to frequently be the case in the early days of the network. In the future,
more comprehensive approaches may be implemented to separate fees for state growth from other resources.

5.4 Reserve Balance UX Implications
Reserve balance (Section 2.1.1) is introduced to address the unknown execution results of transactions
pending in the last k blocks due to delayed execution. The design was chosen to minimize disruption to
standard usage patterns while enabling advanced users to have multiple pending transactions. In terms of
practical implications, reserve balance can cause a given transaction to:

• Be invalid for inclusion in a consensus block depending on the set of pending transactions.

• Revert in execution if an account balance decreases beneath the reserve balance outside of gas payments.

For an account that is undelegated (and with no pending authorizations), the first pending transaction is
unaffected by reserve balance restrictions in either consensus or execution and is simply subject to standard
balance solvency checks. Subsequent transactions sent from that account within k blocks could be impacted,
especially if the account balance is close to or below the reserve level. For delegated accounts, all transactions
are potentially affected.

8

6 Reserve Balance Specifications
There is a default reserve balance for all accounts denoted by default_reserve_balance. In a future version,
the protocol could allow users, through a stateful precompile, to customize their reserve balance.

Denote the reserve balance for account a as user_reserve_balance(a). Let the consensus-execution delay
gap be denoted by k blocks. More specifically, building or validating a consensus block number n requires
knowing about state obtained by applying block n − k (staten−k) from the execution client (k>1 for asyn-
chronous execution). Denote account a’s balance at a state st as balance(a, st). Denote account a’s EIP-7702
delegation status at the state st as is_delegated(a, st): it is true if the delegation is towards a non-null ad-
dress, false otherwise. Let the block number in which tx is sequenced (or being considered for sequencing)
be denoted by blocknumber(tx).

We say a transaction is before (denoted by ≺; ⪯ denotes before or equal to) another transaction based on
their ordering in the blockchain. Similarly, we say a transaction t is after a state s if t is after the transaction
that produced s.

9

Let gas_fees(t) = gas_limitt · gas_bidt.

Algorithm 1: Transaction Inclusion Validity. Used by consensus client and execution client with
appropriate values of parameter x. For consensus client, x = n− k

Precondition: n > x ≥ n− k
Given:

• t: Transaction from account t.sender for block n

• statex: State obtained by applying block x (x = n− k for consensus client)

• I: All intermediate transactions from account t.sender from block x+1 (inclusive) up to t (inclusive).

• P: All transactions from block x− k + 2 (inclusive) up to t (inclusive).

Define:

ValidInclusion(t, statex, I,P) := (2)
let balance = balance(t.sender, statex) (3)

let delegated = is_delegated(t.sender, statex) (4)
let first_tx = I[0] (5)

let starting_block = min(x+ 1, blocknumber(first_tx)− k + 1) (6)

Case Analysis:

if first_tx = t ∧ IsEmptying(first_tx,P, starting_block, delegated) then (7)
(No intermediate transaction, don’t do reserve balance checks if t qualifies)

balance ≥ gas_fees(first_tx) (8)
else (9)

if IsEmptying(first_tx,P, starting_block, delegated) (10)
then (At most one emptying transaction: I[0])

let adjusted_balance = balance− (first_tx.value + gas_fees(first_tx))
(adjusted_balance can be negative here, implementation works with EVM’s uint)

let reserve = min(user_reserve_balance(t.sender), adjusted_balance) (11)

in reserve ≥
∑

tx∈I[1:]

gas_fees(tx) (Sum over all but first)

else (12)
let reserve = min(user_reserve_balance(t.sender), balance) (13)

in reserve ≥
∑
tx∈I

gas_fees(tx) (Use reserve balance for all transactions)

10

Algorithm 2: Transaction Execution
Given:

• t: Transaction from account a in block n

• state: Current state right before executing t

• prior_transactions: All transactions from block n− k + 1 (inclusive) up to t (inclusive).

Define:

ExecutionResult(t, state, prior_transactions) := (14)
let sender = t.sender (15)

let solvency_condition = balance(sender, state) ≥ gas_fees(t)
(Soundness assertion)

let (new_state, original_balances) = Execute(state, t) (16)
let delegated = is_delegated(sender, state) (17)

let is_emptying = IsEmptying(t, prior_transactions, n− k + 1, delegated)
(18)

let reserve_dipped = DippedIntoReserve(original_balances, (19)
new_state, t, is_emptying) (20)

let reverted_state = RevertExecution(state, t)
(balance(sender, reverted_state) = balance(sender, state)− gas_fees(t))

Execution Logic:

ExecutionResult = (21)
AssertionFailure if ¬solvency_condition
(Success, new_state) if solvency_condition ∧ ¬reserve_dipped
(Revert, reverted_state) if solvency_condition ∧ reserve_dipped

(22)

Note: Execute is the black box EVM execution without reserve balance, and returns the state after
execution and a map with keys as accounts whose balances were changed during execution and
values as the old balances before execution.

11

Algorithm 3: Reserve Balance Dip Detection
Given:

• Original balances map original_balances : Address → Balance

• New state new_state

• Transaction t

• is_emptying: Is sender allowed to dip into reserve

Define:

DippedIntoReserve(original_balances, new_state, t, is_emptying) := (23)
∃(account, orig_bal) ∈ original_balances. account is EOA (not SC) ∧ (24)
AccountReserveViolated(account, orig_bal, new_state, t, is_emptying) (25)

Where:

AccountReserveViolated(account, orig_bal, new_state, t, is_emptying) := (26)
let reserve = min(user_reserve_balance(account), orig_bal) (27)
let current_balance = balance(account, new_state) (28)

let violation_threshold =

{
max(reserve− gas_fees(t), 0) if account = t.sender

reserve if account ̸= t.sender
(29)

(max(reserve - gas_fees(t), 0) is done to work with the uint datatypes of EVM.)
in ((account ̸= t.sender) ∨ ¬is_emptying) ∧ (current_balance < violation_threshold) (30)

12

Algorithm 4: Emptying Transaction Check
Given:

• Transaction t

• all_tx: Contains all transactions from block starting_block (inclusive) up to t (inclusive)

• Starting block starting_block

• Delegation status delegated_in_state

Logic: EOA account (no potential delegation) and no prior transactions in the past k blocks
(includes t’s block).
Define:

IsEmptying(t, all_tx, starting_block, delegated_in_state) := (31)
let prior_txs = {tx ∈ all_tx : tx ⪯ t∧ (32)

blocknumber(tx) ≥ starting_block}
(33)

let delegation_condition = delegated_in_state (34)
let auth_condition = ∃tx ∈ prior_txs. HasDelegationAuth(tx, t.sender)

(35)

let prior_sender_condition = ∃tx ∈ prior_txs. (PriorSenderTx(tx, t))
(36)

Where:

PriorSenderTx(tx′, t) := tx′ ≺ t ∧ tx′.sender = t.sender (37)
∧ blocknumber(tx′) ≥ blocknumber(t)− k + 1 (38)

HasDelegationAuth(tx, account) := transaction tx (39)
contains delegation authorization from account (40)

Note: Delegation authorization towards null address (i.e., undelegating) in prior transactions also
counts in HasDelegationAuth.
Result:

IsEmptying(t, all_tx, starting_block, delegated_in_state) ⇐⇒ (41)
¬delegation_condition ∧ ¬auth_condition

(42)

∧ ¬prior_sender_condition (43)

13

7 Dynamic Base Fee Reference Implementation

def fake_exponential(factor: np.uint64, num: np.int64, denom: np.uint64) ->
np.uint64:↪→

i = Uint256(1)
output = Int256(0)
num_accum = Int256(Uint256(factor) * Uint256(denom))
while num_accum != 0:

output += num_accum
num_accum = (num_accum * Int256(num)) // Int256(Uint256(denom) * i)
i += Uint256(1)

return np.uint64(output // Int256(denom))

class DynamicTFM:
def __init__(self, gas_limit, target_gas, min_base_fee,

beta, epsilon, inv_step):
protocol params
self.gas_limit = np.uint64(gas_limit) # 200_000_000
self.target_gas = np.uint64(target_gas) # 160_000_000
self.min_base_fee = np.uint64(min_base_fee) # 100_000_000_000
self.beta = np.uint64(beta) # 96
self.epsilon = np.int64(epsilon) # 160_000_000
self.inv_step = np.uint64(inv_step) # 28

self.base_fee = np.uint64(0)
self.moment = np.uint64(0)
self.trend = np.int64(0)

def update(self, gas_used: np.int64):
delta = np.int64(gas_used) - self.target_gas
num = self.epsilon * delta
denom = self.inv_step * (np.uint64(math.isqrt(np.uint64(max(0,

np.int64(self.moment) - self.trend*self.trend)))) + self.epsilon) *
(self.gas_limit - self.target_gas)

↪→

↪→

self.base_fee = fake_exponential(self.base_fee, num, denom)
self.base_fee = max(self.base_fee, self.min_base_fee)
self.trend = (np.int64(self.beta) * self.trend +

np.int64(np.uint64(100)-self.beta) * (-delta)) // 100↪→

self.moment = np.uint64((Uint128(self.beta) * Uint128(self.moment) +
(Uint128(100)-Uint128(self.beta)) * Uint128(Int128(delta) *
Int128(delta))) // Uint128(100))

↪→

↪→

Listing 1: Python reference implementation of base fee update rule with integer math

14

	Introductory Concepts
	Fields in Transactions and Blocks
	Asynchronous Execution

	Transaction Fee Mechanism (TFM)
	Inclusion and Block Construction
	Reserve Balance

	Ordering
	Payment Rule for User
	Burn Rule
	Reward Rule for the Validator
	Base Fee Update Rule

	List of Parameters with Suggestions
	Opcode Gas Costs and Gas Refunds
	Cold Access Cost
	Storage Gas Cost and Refunds
	Precompiles

	Discussion
	Reasoning for Parameters
	Block Gas Target and Goal of Update Rule
	Minimum Base Fee
	Base Fee Update Rule Parameters

	Gas Limit vs Gas Used
	Discussion on Relative Storage Costs and Refunds
	Reserve Balance UX Implications

	Reserve Balance Specifications
	Dynamic Base Fee Reference Implementation

